(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)
Rewrite Strategy: INNERMOST
(1) DependencyGraphProof (BOTH BOUNDS(ID, ID) transformation)
The following rules are not reachable from basic terms in the dependency graph and can be removed:
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
++(x, ++(y, z)) → ++(++(x, y), z)
++(.(x, y), z) → .(x, ++(y, z))
rev(nil) → nil
++(nil, y) → y
++(x, nil) → x
make(x) → .(x, nil)
Rewrite Strategy: INNERMOST
(3) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The TRS does not nest defined symbols.
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
++(x, ++(y, z)) → ++(++(x, y), z)
(4) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
++(.(x, y), z) → .(x, ++(y, z))
rev(nil) → nil
++(nil, y) → y
++(x, nil) → x
make(x) → .(x, nil)
Rewrite Strategy: INNERMOST
(5) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
.0(0, 0) → 0
nil0() → 0
++0(0, 0) → 1
rev0(0) → 2
make0(0) → 3
++1(0, 0) → 4
.1(0, 4) → 1
nil1() → 2
nil1() → 5
.1(0, 5) → 3
.1(0, 4) → 4
0 → 1
0 → 4
(6) BOUNDS(1, n^1)
(7) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(nil, z0) → z0
++(z0, nil) → z0
rev(nil) → nil
make(z0) → .(z0, nil)
Tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
++'(nil, z0) → c1
++'(z0, nil) → c2
REV(nil) → c3
MAKE(z0) → c4
S tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
++'(nil, z0) → c1
++'(z0, nil) → c2
REV(nil) → c3
MAKE(z0) → c4
K tuples:none
Defined Rule Symbols:
++, rev, make
Defined Pair Symbols:
++', REV, MAKE
Compound Symbols:
c, c1, c2, c3, c4
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
MAKE(z0) → c4
++'(z0, nil) → c2
++'(nil, z0) → c1
REV(nil) → c3
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(nil, z0) → z0
++(z0, nil) → z0
rev(nil) → nil
make(z0) → .(z0, nil)
Tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
S tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
K tuples:none
Defined Rule Symbols:
++, rev, make
Defined Pair Symbols:
++'
Compound Symbols:
c
(11) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(nil, z0) → z0
++(z0, nil) → z0
rev(nil) → nil
make(z0) → .(z0, nil)
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
S tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
++'
Compound Symbols:
c
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
++'(.(z0, z1), z2) → c(++'(z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(++'(x1, x2)) = x1
POL(.(x1, x2)) = [1] + x2
POL(c(x1)) = x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
S tuples:none
K tuples:
++'(.(z0, z1), z2) → c(++'(z1, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
++'
Compound Symbols:
c
(15) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(16) BOUNDS(1, 1)